G

PESU Center for
Information Security,
Forensics and

Cyber Resilience

Reverse Engineering

PES

UNIVERSITY

About me

« My name is Gagan Chandan. I'm a third semester
CSE student here at PES RR Campus.

| have been into cybersecurity for a little over 2
years now. | have mostly focussed on reverse
engineering, vulnerability research and software

. Flﬁzazvlg%ts of CTF experience having played with two different teams,
Inlcuding our team at ISFCR, mainly working on Reverse Engineering
and Binary Exploitation challenges. Both these teams have had
multiple top 3 finishes in competitions and have regularly featured
among India’s top teams during my time with them

. . . . PES
What is Reverse Engineering € @Fres

« Reverse Engineering is the process of understanding the
functionality of a program or application, usually one without the
source code available, in order to discover deeper flaws within it.

. Itis heavily used in vulnerability research and malware analysis.

. Itis also used for modifying closed source software. It is often
used for modding games and even for cracking commercial
software.

x64 Assembly

Assembly, or ASM, is a term used to refer to any low level language with a
strong, direct correspondence between instructions in the language and the
architecture’s machine code. It is used to directly communicate with a
computer’s hardware.

Different CPU architectures have different assembly languages. They are also
called Instruction Set Architectures (ISA).

x64 or x86-64 ISA is used by 64-bit Intel and AMD processors.

I . PES
Registers & @res

. Small, storage areas built into the CPU.

« In x86-64, there are 16 general purpose registers(although two are
not actually general purpose as we will come to see), one instruction
pointer and the RFLAGS register.

« Registers in x86-64 are 64 bits wide. In x86, they are 32 bits wide.

Registers © @t

. General purpose registers: rax, rbx, rcx, rdx ,rsi, rdi, rbp, rsp, r8, r9,
rlo, rll, r12, r13, r14 r15

« I'bp : stores the address of the base of the current stack frame.

« ISp : stores the address of the top of the stack.

« Instruction pointer: rip. Stores the address of the next instruction.

The Stack B &)PES

« Conceptual area in RAM. Allocated by the OS when the program starts.

. Last In First Out (LIFO) data structure. Push and pop operations are
used.

. Grows from higher addresses to lower addresses.

. Local variables, temporary values and sometimes function arguments
are stored on the stack.

. Each function is alloted a segment of the stack and is referred to as
that function’s stack frame.

1 . PES
Instructions B @)PES

« The x86 and x64 families of processors use a kind of
architecure called CISC architecture.

« CISC stands for Complex Instruction Set Computer. It means
that a single instruction can perform multiple low level
operations or multi-step operations.

« According to Intel’s official documentation, there are 3,684
Instruction variants int the x64 ISA.

« We will only be looking at 21 of the most commonly seen ones.

NOP

e Syntax: nop

« Does nothing!!!

IIIIIIIIII

MOV

. Syntax: mov destination, source

« Moves the value stored in source into destination.
. Examples:

« Mov rax, 16

e MoV rax, rbx

o MoV rax, [rbx]

IIIIIIIIII

PUSH

« Syntax: push operand

« Pushes the operand onto the top of the stack
. Examples:

e push rax

« push 1337

o push DWORD PTR [rax]

POP © ©res

Syntax: pop destination

Pops off the top element of the stack into the destination

Examples:

pop rax

LEA i @rEs

. Syntax: lea destination, source

« Loads the effective address of source into destination.
. Examples:

. learax, [rsp]

o lea rdi, [rip+0x2000]

Add

. Syntax: add destination, source

. Add the value of source to the value at destination.
. Examples:

o add rax, rbx

» add rax, 20

« add rax, [rbp - 0x04]

SUB

« Syntax: sub destination, source

« Subtract the value of source from destination.
. Examples:

« Sub rax, rbx

« Sub rax, 20

« Sub rax, [rbp - 0x04]

NOT

o Syntax: not argument
 Inverts each bit of the argument.
. Examples:

e NOtrax

AND i @rEs

« Syntax: and operandl, operand?2

. Performs bitwise and on the operands and stores the value at
operandl.

. Examples:
« and rax, rax

« andrax, 0O

OR i @rEs

« Syntax: or operandl, operand?2

. Performs bitwise or on the operands and stores the value at
operandl.

. Examples:
o Or rax, rax

e Orrax, 1

XOR i @rEs

« Syntax: xor operandl, operand?2

. Performs bitwise xor on the operands and stores the value at
operandl.

. Examples:
« XOr rax, rax

e XOrrax, 23

CMP & @PrES

« Syntax: cmp operandl, operand?2

. Compares the operands by subtraction and sets necessary
flags.

. Examples:
« CMp rax, rbx

« Ccmp rcx, 0x10

TEST © Or=

« Syntax: test operandl, operand2

« Performs bitwise and on the operands and sets the necessary
flags.

. Examples:

o lestrax, rax

JMP

Syntax: jmp addr

Jump to given address and resume execution there
Examples:

jmp 0x1337

JE/)Z

Syntax: je/jz addr

Jump to given address only if zero flag is set to 1.
Examples:

je 0x1337

jz OxfOOd

JNE/INZ

Syntax: jne/jnz addr

Jump to given address only if zero flag is set to O.
Examples:
jne 0x1337
jnz 0xf00d

Other Conditional Jumps

« Signed: s, |ns, |g/|nle, jge/nl, jl/inge, jle/ng

. Unsigned: ja/jnbe, jae/|nb, jb/jnae, jbe/jna

CALL i @rEs

Syntax: call func

Push the address of the next instruction onto the stack and
jump to function.

Examples:
call 0x1234

LEAVE i @rEs

. Syntax: leave

. Moves the value of rbp into rsp and pops off the top value of th
stack into rbp.

RET

e Syntax: ret

« Pops off the top value of the stack into rip.

. . PES
Calling conventions & @FrEs

« When calling functions, arguments need to be placed in
designated registers.

« The first argument is stored in rdi, the second in rsi, the
third in rdi and so on.

« https://syscall.sh is a good reference for this.

https://syscall.sh/

Basics of Reverse Engineering

& @,

What is a binary & @res

« On Linux, an executable file is known as a binaries.

« They are of a file format known as ELF (Executable
Linkable Format.

« Reverse engineering mainly deals with examining and
modifying binaries.

; PES
Debuggers i @Pres

« Debuggers are tools that allow you to step through the
execution of a binary interactively.

« They can be used to set breakpoints at different parts of
the program and examine values in registers and
variables.

« GDB is the standard debugger for compiled C binaries on
Linux.

Disassembly C ©re

« Disassembly is the process of generating assembly code
from machine code.

« Tools which receive a binary and output assembly are
known as disassemblers.

« Popular disassemblers include Capstone and Hopper.

« Tools like GDB and objdump can also be used for
disassembly.

Decompilation & @Pres

« Decompilation is the process of converting assembly code
Into a higher level language, usually either C or some
psuedo-code.

« Decompilation is rarely perfect.

« Popular decompilers include Hex-Rays, Snowman and
RetDec.

. . : PES
Reverse Engineering Frameworks o @2

. Reverse engineering frameworks are tools which combine
disassembly and decompilation along with other tools such
as a debugger.

« They are singular tools which can be used for the entire
reverse engineering process.

« Popular RE frameworks are Ghidra, IDA, Binary Ninja and
radare2.

Tools

GDB

. GDB stands for GNU debugger
« Primary debugger on most Unix systems

 Itislargely used for C, C++ and Assembly programs.

o g S
Ghidra B @)PES

« Ghidra is a comprehensive software reverse engineering
framework developed by the USA’s National Security
Agency.

. Itis fully free and open source.

« Among other things, it can be used for debugging,
disassembly and decompilation.

Other utilities s @PES

. file — used to print information about files such as their
format.

« Strings — used to print all human-readable strings present
In a file.

« NM — used to dump symbols from ELF binaries.
« Objdump — used for inspecting object and binary files.

« We will also use a little bit of Python for basic scripting.

PESU Center for
Information Security, W
Forensics and

Cyber Resilience

Let’s solve some challenges!

PES

UNIVERSITY

